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Abstract. Seasonal and interannual variations in global wetland area is a strong driver of fluctuations in global methane 

(CH4) emissions. Current maps of global wetland extent vary with wetland definition, causing substantial disagreement and 25 

large uncertainty in estimates of wetland methane emissions. To reconcile these differences for large-scale wetland CH4 

modeling, we developed a global Wetland Area and Dynamics for Methane Modeling (WAD2M) dataset at ~25 km 

resolution at equator (0.25 arc-degree) at monthly time-step for 2000-2018. WAD2M combines a time series of surface 

inundation based on active and passive microwave remote sensing at coarse resolution (~25 km) with six static datasets that 

discriminate inland waters, agriculture, shoreline, and non-inundated wetlands. We exclude all permanent water bodies (e.g. 30 

lakes, ponds, rivers, and reservoirs), coastal wetlands (e.g., mangroves and sea grasses), and rice paddies to only represent 

spatiotemporal patterns of inundated and non-inundated vegetated wetlands. Globally, WAD2M estimates the long-term 

maximum wetland area at 13.0 million km2 (Mkm2), which can be separated into three categories: mean annual minimum of 

inundated and non-inundated wetlands at 3.5 Mkm2, seasonally inundated wetlands at 4.0 Mkm2 (mean annual maximum 
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minus mean annual minimum), and intermittently inundated wetlands at 5.5 Mkm2 (long-term maximum minus mean annual 35 

maximum). WAD2M has good spatial agreements with independent wetland inventories for major wetland complexes, i.e., 

the Amazon Lowland Basin and West Siberian Lowlands, with high Cohen’s kappa coefficient of 0.54 and 0.70 respectively 

among multiple wetlands products. By evaluating the temporal variation of WAD2M against modeled prognostic inundation 

(i.e., TOPMODEL) and satellite observations of inundation and soil moisture, we show that it adequately represents 

interannual variation as well as the effect of El Niño-Southern Oscillation on global wetland extent. This wetland extent 40 

dataset will improve estimates of wetland CH4 fluxes for global-scale land surface modeling. The dataset can be found at 

http://doi.org/10.5281/zenodo.3998454 (Zhang et al., 2020). 

1 Introduction 

Wetlands cover about 10% of global land area (Davidson et al., 2018) and play an important role in regulating global climate 

via biogeochemical cycling of greenhouse gases (IPCC, 2013). Wetlands are highly productive ecosystems that store large 45 

amounts of soil carbon due to their waterlogged conditions inhibiting aerobic soil respiration. Flooded conditions alter the 

soil redox state for microbes to favor methanogenesis and thus wetlands are the largest natural source of methane (CH4) to 

the atmosphere, contributing ~20-30% of the total annual global methane budget (Kirschke et al., 2013; Saunois et al., 2016, 

2020). The spatial and temporal distribution of wetlands is one of the most important and yet uncertain factors determining 

the time and location of CH4 fluxes (Melton et al., 2013; Parker et al., 2018). Wetlands are at risk from human activities such 50 

as land clearing and drainage, and also at risk from climate change caused drying or less predictable precipitation events 

(Davidson et al., 2018). 

Because wetland definitions vary between science, applications and policy objectives, a definition suitable for CH4 modeling 

is needed for comparative reasons and to avoid double counting. Since the first global wetland map of Matthews and Fung 

(Matthews and Fung, 1987), several additional global and regional wetland area datasets have been developed (Table A1). 55 

These datasets are characterized by differences in definition, data sources, methodologies and time period covered. For 

example, the Ramsar Convention on Wetlands focusing on waterfowl conservation defines wetlands as both vegetated and 

non-vegetated systems (i.e., rivers, lakes, ponds). However, the biogeochemistry and methane flux pathways from open 

water and vegetated wetlands differs substantially. Additionally, human-made water bodies (e.g. reservoirs, rice paddies, 

agricultural wastewater ponds (i.e., aquaculture (Grinham et al., 2018)) are considered wetlands in the definition of the IPCC 60 

National Greenhouse Gas Inventory guidelines (Hiraishi et al., 2014). The biogeochemical processes in these kinds of 

intensely managed wetlands differ from those of natural wetlands, and generic modelling approaches are not applicable.  

Boreal taiga forests and tropical floodplains, which are considered CH4-emitting areas given their seasonally inundated states 

and significant CH4 transport pathway via tree stem (Barba et al., 2019; Pangala et al., 2017), are omitted from many 

wetland mapping products due to the difficulty in detecting dense forest canopies that hide surface inundation. 65 
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Broadly defined, wetland datasets available to this day fall into one of four types: 1) static maps based on a compilation of 

regional inventories based on geomorphic features and aerial photography (Finlayson et al., 1999; Hugelius et al., 2013; 

Lehner and Döll, 2004; Matthews and Fung, 1987; Wulder et al., 2018); 2) remote sensing derived products (Aires et al., 

2017; Carroll et al., 2009; DeVries et al., 2017; Feng et al., 2016; Jensen and McDonald, 2019; Papa et al., 2010; Pekel et al., 

2016; Poulter et al., 2017; Prigent et al., 2001, 2007; Schroeder et al., 2015; Yamazaki et al., 2015); 3) prognostic 70 

hydrological water-balance modeling using approaches like TOPMODEL (Kleinen et al., 2012; Ringeval et al., 2010; 

Stocker et al., 2014; Zhang et al., 2016); 4) hybrid approaches that combine satellite observations with statistical modeling 

(Fluet-Chouinard et al., 2015; Gumbricht et al., 2017; Tootchi et al., 2019). These approaches differ in their representation of 

wetlands, ranging from long-term features of the landscape to area inundated at a given time.  

Characterizing the seasonal and interannual variation in wetland extent is critical to improving global-scale wetland CH4 75 

modeling. Contemporary evidence from remote sensing (Alsdorf et al., 2000, 2007; Hu et al., 2018; Lunt et al., 2019; 

Melack et al., 2004; Pandey et al., 2020; Prigent et al., 2007, 2012; Rodell et al., 2018) and field monitoring (Dunne and 

Aalto, 2013) suggest that global wetlands, especially tropical floodplains, have a significant seasonal cycle and interannual 

variability in spatial extent that depend on changes in water balance (i.e. precipitation, runoff, and evapotranspiration) and 

local topography. Despite the critical importance of spatial and temporal changes in wetland area, there are large 80 

discrepancies among the estimates of global wetland extent (Aires et al., 2018; Melton et al., 2013; Pham-Duc et al., 2017; 

Wania et al., 2013) and only a limited number of available global products characterize temporal dynamics in wetland extent 

(Gallant, 2015; Huang et al., 2014; Prigent et al., 2007, 2020). 

Remotely sensed observations show potential for capturing spatio-temporal wetland patterns. While bottom-up inventories 

define wetlands based on a combination of soils, hydrology and vegetation, satellite-based observations of surface 85 

inundation (i.e. water above the soil) capture areas that are permanently or seasonally wet. Microwave sensor-based products 

(Jensen and McDonald, 2019; Papa et al., 2010; Prigent et al., 2020; Schroeder et al., 2015) can sense water below vegetated 

canopies and now provide a multi-decadal records, with weekly-to-monthly revisit times. Optical sensor-based products 

using visible or infrared bands (Amani et al., 2019; Feng et al., 2016; Jones, 2019; Pekel et al., 2016; Wulder et al., 2018; 

Yamazaki et al., 2015) observe the open water dynamics but have limited capacity to detect surface water beneath vegetation 90 

canopy. L-band (~1 GHz) synthetic aperture radar (SAR) can detect flooding beneath most vegetation canopies and is more 

successful at mapping forested wetlands than higher frequency observations such as optical or microwave products. These 

products separate inland water types at a high spatial resolution, but typically provide limited temporal coverage. 

Data fusion approaches that merge remote sensing observations from multiple sources of sensors at different spatial 

resolutions presents a feasible way to properly capture the dynamics of wetland extent. Despite recent progress in wetland 95 

mapping, long-term wetland dynamic datasets specifically suited for global CH4 studies (Poulter et al., 2017) is an area of 

active research. Further, recent work has shown significant differences between remote sensing wetland products (Pham-Duc 

et al., 2017). These discrepancies can be linked to methodological differences (including pre-processing), data sources, and 

definitions. This introduces large biases in the modeling of wetland CH4 emissions (Bohn et al., 2015), that can be traced to 
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the following limitations: 1) higher-spatial resolution optical sensors can only detect open water in the absence of clouds and 100 

vegetation (while SAR measurements can penetrate cloud and dense canopies but have inconsistent temporal coverage at the 

required wavelength); 2) available coarse-spatial resolution microwave based products accurately represent surface water 

only under low vegetation canopy cover conditions; 3) the intrinsic limitations in remote sensing include the difficulty in 

detecting inundation under snow cover. In addition, several recent studies (Fluet-Chouinard et al., 2015; Hess et al., 2015; 

Prigent et al., 2007; Reschke et al., 2012) suggests that the wetland mapping products at coarse resolution tend to overlook 105 

small inundated areas. Some of the difficulty in merging these products arises from ambiguity in definitions of inundated 

versus open water wetlands. Also, widely used descriptions of wetlands (shallow water with depth less than 2-2.5m 

(Cowardin et al., 1979; Tiner et al., 2015)) overlap with a vast array of  lakes and small ponds - especially in permafrost 

peatlands and thermokarst regions (West and Plug, 2008). The confusion between wetlands and waterbodies  risks double-

counting CH4 emissions from high-latitudes (Thornton et al., 2016). All these issues lead to biases and uncertainties in 110 

developing a global dataset of wetland extent. 

The objective of this study is to develop a global dynamic wetland dataset with a data fusion approach using consistent 

definitions for use in wetland methane emission studies. Given the many wetland types used in the literature, we chose an 

operational definition of wetlands as all natural vegetated forested and non-forested wetlands, excluding coastal wetlands, 

cultivated wetlands such as irrigated rice paddies, and open water systems such as rivers, streams, lakes, ponds, and 115 

reservoirs. Estimates of the methane producing area are used in all bottom-up CH4-flux methodologies: from upscaling 

fluxes measured by eddy covariance at ecosystem scale (Knox et al., 2019; Peltola et al., 2019; Treat et al., 2018) to process-

based modeling at global scale (Bloom et al., 2010; Melton et al., 2013; Poulter et al., 2017). 

The resulting dataset, named Wetland Area Dataset for Methane Modelling (WAD2M), is designed to fuse multiple datasets 

including ground-based wetland inventories, remote sensing products of open waters and surface inundation dataset based on 120 

optical and active and passive microwave satellite observations. Within this framework, the Surface Water Microwave 

Products Series (SWAMPS) is used as the basis for providing the temporal dynamics at a monthly timestep and at a spatial 

resolution of 0.25° over a 19-year period (2000-2018). A set of wetland-related datasets at different spatial resolutions 

representing lakes, ponds, rivers and streams, rice paddies, and a coastal mask, are applied to filter out non-vegetated and 

anthropogenic wetlands. Another set of static maps representing non-inundated wetlands, such as peatlands, are used to fill-125 

in the gaps of SWAMPS. Uncertainties are derived by comparing WAD2M with available benchmark products at regional 

and global scales. 
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2 Methods 

2.1 Overview of data processing and wetland definition  

Our data fusion approach begins with a time series of global, monthly surface inundation provided by SWAMPS v3.2 130 

(Jensen and McDonald, 2019). The SWAMPS data set is derived from a series of active and passive microwave remote 

sensing observations used to estimate total area of surface inundation including all natural and managed terrestrial (open-to 

closed canopy vegetation) and open-water bodies, including coastal, lakes, rivers, ponds. All ancillary datasets (inventoried 

wetlands, remotely-sensed inland waters, rice, ocean) were re-gridded to 0.25-degree resolution to match SWAMPS and 

expressed as fractional areas. The following sections describe the data processing in the following steps (Figure 1): The 135 

SWAMPS dataset was used to represent the temporal variation in wetland dynamics. For the wetland regions that were not 

captured or well-represented in SWAMPS mainly due to closed-canopy conditions, independent datasets of static wetland 

distributions were fused with SWAMPS. The merger was carried out in five steps: 1) by calculating the long-term maximum 

annual surface inundation from SWAMPS (fwmax), 2) on a per-pixel basis comparing fwmax with the independent datasets of 

static wetland distributions (see Methods 2.2), 3) adjusting fwmax to match the wetland maps for pixels where fwmax is less 140 

than the static distribution, 4) imposing the SWAMPS seasonal cycle to the corrected fwmax dataset, and 5) removing inland 

water bodies, coastal waters, and rice agriculture. 

We added missing wetlands to SWAMPS by fusing it with best available maps and inventories of under-represented 

wetlands separately across three latitudinal bands. For northern wetland inventories, we used the Northern Circumpolar Soil 

Carbon Dataset (NCSCD; (Hugelius et al., 2013) to map permafrost and non-permafrost peatlands (Histels and Histosols). 145 

Mineral soil wetlands were mapped from SAR-based map by including occurrences of wetlands in the circum-arctic 

(Widhalm et al., 2015) outside areas mapped as peatlands by the NCSCD. In the tropics, we used a 231-m resolution pan-

tropical dataset based on geomorphic classification approach (Gumbricht et al., 2017). For temperate regions not covered by 

either the boreal and tropical datasets, we used the 1-km Global Lakes and Wetlands Dataset (GLWD) Level 3 after 

removing Classes 1-3 lakes and rivers (Lehner and Döll, 2004). The global dataset of Monthly Irrigated and Rainfed Crop 150 

Areas (MIRCA2000) at 10-km resolution, was used to remove rice agriculture (Portmann et al., 2010). Lakes, ponds, rivers 

and other permanent inland water bodies were removed using the Landsat Global Surface Water dataset (Pekel et al., 2016). 

An ocean/coastline mask based on MOD44W Collection 6 (Carroll et al., 2009), a 250-m resolution annual product from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensor, was used to remove ocean waters. The new 

SWAMPS v3.2 (Jensen and McDonald, 2019), is an updated version over SWAMPS v2.0 (Schroeder et al., 2015) that was 155 

used  as input in the hybrid wetland product SWAMPS-GLWD (Poulter et al., 2017), the predecessor of WAD2M. The 

major differences between WAD2M and SWAMPS-GLWD are that 1) WAD2M uses an updated version SWAMPS v3.2 

with improved algorithm and ancillary datasets; 2) WAD2M uses multiple static wetland maps as mergers in the processing 

(while SWAMPS-GWLD only considers GLWD in the processing); 3) The WAD2M includes removal of lakes, ponds, 

rivers, streams and irrigated rice paddies, and 4) WAD2M uses a globally consistent ocean/land mask. 160 
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To characterize the temporal dynamics, three wetland statistics were computed: (1) Mean Annual minimum (MAmin); (2) 

Mean Annual maximum (MAmax); (3) Long-term Annual Maximum (MALt). For each 0.25-degree grid cell, annual 

magnitude in wetland area can be calculated as difference between MAmax and MAmin, while wetland areas that do not flood 

during the average year (i.e., intermittent wetlands) can be calculated as difference between MALt and MAmin. 

2.2 Datasets 165 

2.2.1 Wetland Dynamic Dataset  

The Surface Water Microwave Product Series v3.2 (SWAMPS) is a long-term, daily time series of inundated area fraction 

dataset derived from microwave remote sensing. The SWAMPS dataset provides estimates of terrestrial surface water 

dynamics, including for wetlands, rivers, lakes, ponds, reservoirs, rice paddies, and episodically inundated areas. SWAMPS 

provides estimates of global inundated area fraction (fw) developed under the NASA Making Earth System Data Records for 170 

Use in Research Environments Program (MEASURES). SWAMPS fw estimates are derived from a combination of passive 

microwave brightness temperature and active microwave radar backscatter from a variety of satellite sensors supplemented 

with a priori knowledge of land cover based on a static MODIS land cover product (Schroeder et al., 2015). The sensors 

used in SWAMPS product include daily gridded DMSP Special Sensor Microwave Imager-Special Sensor Microwave 

Imager Sounders (SSMI-SSMIS) Pathfinder brightness temperature observations and active microwave backscatter from 175 

NASA SeaWinds-on-QuikSCAT Level 1B Sigma0 Product and Advanced Scatterometer Level 1B (ASCAT) product, with 

ancillary snow water equivalent, land cover map and NDVI from AVHRR and MODIS for delineating snow cover and arid 

and semiarid areas. SWAMPS v3.2 is an update of v2.0 and includes a new cloud and snow mask, a quality control flag, a 

new land and ocean mask, freeze-thaw detection, and improved sensor intercalibration. For the purpose of this study, the 

SWAMPS v3.2 dataset, covering the years 2000 to 2018, were merged into a single time series using samples flagged as 180 

‘Valid Observations’. For SWAMPS v3.2, the coastal zone was filtered out using a Landsat-based 90-m mask of permanent 

ocean waters defined by the G3WBM Global Water Body Map dataset (Yamazaki et al., 2015) – but later re-filtered using 

the MODIS MOD44W product. The SWAMPS v3.2 data were remapped to WGS84 using bilinear interpolation at 0.25-

degree resolution with values aggregated from daily to monthly means. 

2.2.2 Open water & land-ocean masks 185 

The Global Surface Water (GSW) product is derived from 16-day Landsat thematic mapper imagery at 30-m spatial 

resolution and identifies the presence or absence of water bodies over the period 1984-2016 (Pekel et al., 2016). We used 

this dataset to represent permanent water bodies which we define as those covered by open water for more than 50% of the 

months during this time period. We used this as a permanent waterbody mask to avoid including temporary waterbodies that 

are considered wetlands in our working definition. This distribution of long-term maximum permanent water was re-gridded 190 

to 0.25-degree fractional area per grid cell and used for removing inland-water areas from SWAMPS v3.2. Because the 
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coastal regions were masked out in the processing of SWAMPS, we used the MODIS product MOD44WC6 (Carroll et al., 

2009) to generate an ocean mask in the processing of GSW to avoid over-deducting. The coastline was buffered by 4 pixels 

(~1 km) into the water bodies. The buffered water was intersected with the ocean-labelled pixels from MOD44WA1 to 

separate the ocean from inland water. The resulting ocean mask was then applied to remove coastal wetlands in GSW. The 195 

static long-term open water area excluding coastal regions in GSW is 4.5 Mkm2, compared with the river and stream surface 

areas of 0.8 Mkm2 (Allen and Pavelsky, 2018). 

2.2.3 Static wetland distributions 

We used static wetland maps to fill gaps left by wetland types that are under-represented or missed by the SWAMPS dataset. 

However, most static maps do not have global coverage or tend to have lower accuracy compared to the regional products, 200 

leaving us to take a separate merging approach for each of three latitudinal bands. 

Many arctic wetlands, including peatlands do not have surface inundation and thus are not captured by SWAMPS 3.2, but 

still emit methane. We use the Northern Circumpolar Soil Carbon Dataset (NCSCD) to map permafrost and non-permafrost 

peatlands based on the Histels and Histosols soil orders (Hugelius et al., 2013). The NCSCD dataset is a digital polygon-

based database compiled from harmonized regional soil classification maps in which data on soil order coverage have been 205 

linked to pedon data. In this study, the NCSCD wetland distribution is used as supplementary data for the latitudinal bands 

from 60N-90N. In this study we use a gridded version with a spatial resolution at 0.25 degrees. Permafrost and non-

permafrost peatlands (Histels and Histosols, defined as >40 cm surface peat) are mapped in the NCSCD from harmonized 

regional and national soil maps (Hugelius et al., 2013). However, these maps do not include occurrences of mineral soil 

tundra wetlands (with organic soil horizons of 0 to 40 cm) and the maps do not include smaller wetland complexes (Hugelius 210 

et al., 2020). To better include these types of wetlands, the NCSCD soil maps were combined with CircumArctic Wetlands 

based on Advanced Aperture Radar (CAWASAR) by Widhalm et al., (2015). The SAR data identifies both organic and 

mineral wetland soils. It is based on ENVISAT Advanced SAR data acquired in Global Monitoring mode (medium 

resolution) under frozen soil conditions, what represents surface roughness which can serve as proxy for wetness levels in 

tundra. The wettest class was included as wetland. It corresponds to soils with >25 kg C m² in the top 100 cm (Bartsch et al., 215 

2016). To avoid double counting of organic wetlands (peatlands) the datasets were overlayed so that any overlap between the 

datasets was removed, maintaining the NCSCD in the output data. The merged static map covers 2.3 Mkm2 for the high 

latitudes (>60N), including peatlands and mineral wetlands in the tundra biomes.  

The distribution of tropical wetlands, including annually or seasonally water-logged area and tropical peatlands, are derived 

from an expert-system mapping product (Gumbricht et al., 2017). We used the CIFOR wetland distribution for adjusting 220 

wetlands in the latitudinal bands from 60S-40N. This static map was generated by combining satellite images, and 

Topographic Convergence Indices (TCI) by the Center for International Forestry Research (CIFOR). The TCI indices are 

calculated based on Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) at 250 m resolution with 

https://doi.org/10.5194/essd-2020-262

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 22 December 2020
c© Author(s) 2020. CC BY 4.0 License.



8 

 

precipitation climatology from WorldClim global data set (Hijmans et al., 2005). A simplified hydrological model was used 

to estimate the local vertical water balance, runoff, and estimate flood volumes. The topographic and hydrologic data are 225 

merged with MODIS (MCD43A4) images used for estimating the duration of wet and inundated soil conditions. The 

estimated area of tropical peatlands and wetlands are ~1.7 Mkm2 and ~4.7 Mkm2 respectively. The estimated extent of 

CIFOR for the Cuvette Centrale tropical African peatland in the Congo basin is 125,400 km2, which is in agreement with 

145,500 km2 of a recent independent field investigation  (Dargie et al., 2017). 

The Global Lakes and Wetland Dataset (GLWD) (Lehner and Döll, 2004) is a global database of lakes, reservoirs, and 230 

wetlands based on the aggregation of aerial surveys, surveyor maps and inventories at global and regional scales. While 

GLWD was generated from data sources now decades old, for some regions, it still represents the most complete wetland 

database available today. In this study, the GLWD wetland distribution is used to cover the temperate wetland only in the 

latitudinal band 40N-60N, outside the range of NCSCD and CIFOR. We used the Level 3 product, a global raster map that 

contains 12 classes of waterbodies and wetlands at the 30-second resolution. We excluded the classes representing lakes, 235 

rivers and reservoirs (1-3) and estimated the area of fractional wetland classes (9-12) as the midpoint from the range of each 

class. We then calculated the total fraction of wetland from all classes in 0.25-degree pixels. The estimated total wetland 

extent in GLWD is 8.7 Mkm2 for the globe and 2.7 Mkm2 for the 40N-60N bands. 

2.2.4 Irrigated rice distributions 

The distribution of rice paddies is derived from the global data set of monthly irrigated and rainfed crop areas for the year ca. 240 

2000 (MIRCA2000) (Portmann et al., 2010). The datasets used to develop MIRCA2000 are based on compiling census-

based land use datasets downscaled to grid-cell level and thus is generally consistent with subnational statistics collected by 

national institutions and by the FAO (Food and Agriculture Organization of the United Nations). For this study, we extracted 

the annual maximum area of irrigated rice paddies from its original resolution at 5 arc-minute and remapped to 0.25-degree 

resolutions. We did not consider rainfed rice as we could not reliably separate lowland from upland cropping practices, with 245 

only the latter seasonally contributing to surface inundation. The estimated rice paddies in MIRCA2000 (irrigated: 0.64 

Mkm2; rainfed: 1.13 Mkm2) is largely consistent with census-based national and sub-national statistics from FAO (1.54 

Mkm2 for total area at ca. 2000) and slightly lower than a remote sensing estimate for irrigated (0.66 Mkm2) (Salmon et al., 

2015),. We thus apply the monthly rice cover from 2000 across the entire 2000-2018 time-series. This assumption ignoring 

year-on-year change in rice paddy area is reasonable given that its area increased by < 1.6% over 2000-2017 according to the 250 

IRRI World rice statistics (http://ricestat.irri.org:8080/wrsv3/entrypoint.htm).  
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2.3 WAD2M evaluation 

The WAD2M was evaluated against several, both static and dynamic, independent datasets of wetland area and surface 

inundation (Table A1). We used a set of satellite-based terrestrial water dynamics to evaluate the trends in temporal pattern 255 

of WAD2M, including (1) global soil moisture time series based on ESA Soil Moisture and Ocean Salinity mission (SMOS; 

level-4; (Kerr et al., 2012); (2) a global inundation time series from the Global Inundation Extent from Multi-Satellite 

(GIEMS version 2) (Prigent et al., 2020); (3) a global land water mass dynamics product from the Gravity Recovery and 

Climate Experiment  mission (GRACE; (Landerer and Swenson, 2012); and (4) a global inundation dynamics from a 

prognostic run of a land surface model LPJ based on topography-based hydrological model (TOPMODEL) using CRU 260 

meteorological forcings (Zhang et al., 2018).  We also compare to a global static map from Tootchi et al., 2019 (regularly 

flooded wetlands plus groundwater-driven wetlands based on topographic index; hereafter denoted as Tootchi2019) and 

region static maps available over the West Siberian Lowlands (Terentieva et al., 2016) and Amazon Basin (Hess et al., 2015). 

The similarity of WAD2M performance to these the independent validation data is evaluated using the Kappa index.  

3 Results and Discussions 265 

3.1 Effect of data processing on the results 

Globally, WAD2M (MAmax) identifies 3.6 Mkm2 more wetlands compared to SWAMPS v3.2 (Table 1). On a continental 

scale, the wetland extent of SWAMPS v3.2 is in general agreement with inventories except for pronounced discrepancies for 

Tropical wetlands (e.g. Amazon Lowland and tropical Africa), central Asia, and the Sahel regions. The lower area of tropical 

wetland in the SWAMPS v3.2 is generally due to the influence of dense forest canopies. It should be noted that the 270 

SWAMPS v3.2 detected higher wetland area in India than southeastern China, due to the inclusion of rice paddies in 

SWAMPS v3.2 that are masked out in WAD2M. Fig. 2d shows the comparison of the latitudinal gradient between original 

SWAMPS and WAD2M. Generally, WAD2M maintains the same latitudinal pattern as the original SWAMPS, where the 

peak of wetland area occurs in latitudinal bands of 40 N-50 N for boreal wetlands and another peak around the equator for 

tropical wetlands. 275 

Table 1 quantifies the effect of the data processing steps on the continental and global estimates of wetland area. The total 

area including all water bodies such as rice paddies, rivers, streams, lakes, ponds, and reservoirs after fwmax correction are 

17.0 Mkm2 for MALt. This number is close to the downscaled GIEMS-D15 (17.3 Mkm2), also produced through data merger, 

suggesting a good agreement between the two products. Applying the fwmax correction leads to a ca. 20% increase for the 

three states of inundation relative to the SWAMPS v3.2. As intended, the augmentation with inventories filled many missing 280 

or underestimated wetland areas of the SWAMPS dataset, which include the Congo floodplain, Amazon Basin lowlands, the 
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Pantanal, Southeast Asia peatlands, and peatlands in high latitudes (i.e., Hudson Bay Lowlands and Western Siberian 

Lowlands). The highest increase of wetland areas between SWAMPS v2.0 and SWAMPS v3.2 occurs in Asia, followed by 

North America in the fwmax correction step. However, when we subsequently removed open water and rice paddies in the last 

step, the increase in wetland area for Asia, North America, and Europe are eliminated. As a result, only South America has a 285 

higher wetland area in WAD2M than in SWAMPS v3.2. 

3.2 Spatial distributions 

3.2.1 Global distributions 

Our estimated total annual maximum area of global vegetated wetlands (excluding Greenland and Antarctica) is ~13.0 Mkm2 

(Fig. 3a). This estimate consists of 3.5 Mkm2 of mean annual minimum (Fig. 3b), 4.0 Mkm2 of seasonally inundated 290 

wetlands (MAmax minus MAmin) (Fig. 3c), and 5.5 Mkm2 of intermittently inundated wetlands (MALt minus MAmax) (Fig. 3d). 

Our estimated global total wetland area is slightly higher than GIEMS2 (Table 2) but is lower than a high-resolution version 

of GIEMS initial version GIEMS-D15, which reports a long-term maximum of 17.3 Mkm2 (Fluet-Chouinard et al., 2015). 

Considering that WAD2M conservatively excludes rice paddies (0.59 Mkm2), rivers, streams, and lakes and ponds (2.52 

Mkm2) while GIEMS-D15 include these water bodies, one possible conclusion is that WAD2M applies the upward mergers 295 

of CIFOR and NCSCD, which has lower wetland estimates than GLWD, causing a lower long-term maximum than GIEMS-

D15. In addition, our estimated total area for intermittently inundated wetlands is close to the 5.2 Mkm2 reported for similar 

wetlands by GIEMS-D15, suggesting a good agreement for temporary inundated areas between two independently 

developed products. Other recent studies (Hu et al., 2017; Tootchi et al., 2019), however, proposed a much higher global 

wetland area of 27-29 Mkm2, which are likely overestimations due to their approaches based on topographic wetness indexes 300 

that do not take into account the location of surface-water tables. This leads to an overestimation of the inundated area with 

shallow groundwater tables, and large inundated areas in e.g. Central Asia and South America that are not matched by other 

wetland maps. 

Permanently inundated wetlands are located in well-documented wetland hotspots, including the Hudson Bay Lowland and 

West Siberian Lowland, where a large extents of peat bogs and fens are not represented by SWAMPS v3.2. In tropical 305 

regions, key peatland areas along the Amazonian floodplain, in the Cuvette Centrale of the Congo (Dargie et al., 2017), and 

the tropical peatlands in Indonesian Papua are all captured by WAD2M. The subtropical and boreal regions are the main 

contributors to the seasonally inundated wetlands. For the subtropical regions, the seasonal wetlands are largely located in 

Southeastern Asia and the Sahel, where the variation of wetlands is mainly driven by the annual cycle of precipitation in 

monsoon regions. For the high latitudes, seasonal wetlands are primarily in the transition region from temperate to boreal in 310 

across both North America and Eurasia. The high seasonality of inundation in these regions were also captured by the 

surface inundation retrievals of passive microwave observations from the Soil Moisture Active Passive mission (SMAP) (Du 

et al., 2018).  
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The latitudinal distribution of wetland area (Fig. 4) suggest that the northern hemisphere mid-to-high latitudes (> 45°N) have 

the highest coverage of wetland area with 45±5% of the total area of wetlands, followed by the equatorial region (10°S-315 

10°N). A large portion of the intermittent wetlands are found in the northern mid-high latitudes, in regions that also have 

large areas of seasonal wetlands. The overall latitudinal pattern in WAD2M is similar to that of other estimates except for the 

Tootchi2019, which has the highest wetland area along the latitude gradient. The exception is over the mid-latitudes (20°N-

40°N) where the wetland area in GLWD are more extensive than that in WAD2M. The wetland areas in the arctic (>60°N) 

in WAD2M have lower wetland extent than GLWD and NCSCD but higher than GIEMS2. The WAD2M shows a slightly 320 

higher wetland extent in the latitudinal band of 10°N-15°N compared to the other products, which we attribute to the higher 

intermittent wetlands in Southeastern Asia detected by SWAMPS (Fig. 3d).The latitudinal gradient of the wetland area in 

WAD2M is similar to the previous version SWAMPS-GLWD (Poulter et al., 2017), but with a reduced wetland area in the 

Arctic (> 50°N) and at mid-latitudes (15°N-45°N), a consequence of the masking out the inland-water areas from GSW. 

Surface inundation products (GIEMS2 and SWAMPS) have limited observations in the high latitudes due to underestimates 325 

of wetland extent for unsaturated peatlands (Bohn et al., 2015), the presence of snow and ice, and are not reliable points of 

comparison in high latitudes. 

3.2.2 Regional comparison 

We validated WAD2M against available independent fine-resolution datasets for the two methane emitting hotspots, 

Amazon Basin Lowlands (defined as the portion of the Amazon watershed below 500 m asl.) and West Siberian Lowlands. 330 

These two regions represent different wetland subtypes, vegetation compositions and local hydrology, making them 

complimentary for our validation. 

The distribution of wetland area from WAD2M shows a similar spatial pattern for the Amazon Basin Lowlands compared to 

the map based on JERS-1 SAR (Hess et al. 2015), which was used by Pangala et al. (2017) to estimate methane emissions. 

WAD2M have a good similarity (kappa=0.54) with the independent, L-band synthetic aperture radar (SAR) map, slightly 335 

lower than GIEMS2 (kappa=0.56; Fig. 6a) but higher than all other global products compared (range: 0.1-0.2). WAD2M 

adequately captures the permanently inundated wetlands along with the Amazon Basin river channel network as well as 

temporarily flooded wetlands during the wet season (Fig. 5a). However, considerable spatial disagreements of the wetland 

location and extent were found among available datasets when compared with Hess et al., 2015. The disagreements captured 

in Fig. 6a are primarily related to the seasonally inundated Pantanal floodplains that have relatively flat terrains with 340 

dominant herbaceous/shrubland (height < 5 m) and the Pastaza-Marañon wetland basin of the Western Amazonia that have 

large areas of permanently inundated forested swamps with dense-canopy. The WAD2M estimated wetland fraction exhibits 

a reasonably good agreement with independent SAR-based wetland products from Hess et al., (2015) for the Pantanal 

floodplains and the Ucayali-Maranon wetlands basin. The WAD2M estimates for Pastaza-Marañon swamps are close to 

CIFOR and Hess et al., (2015), and are considerably lower than Tootchi2019. Over the Pantanal floodplains, WAD2M 345 

shows moderate-density wetlands while the Tootchi2019 suggest a widespread high-density area over the same extent. The 

https://doi.org/10.5194/essd-2020-262

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 22 December 2020
c© Author(s) 2020. CC BY 4.0 License.



12 

 

CIFOR estimate is likely an underestimation given the limitations of its topographical hydrology approach at estimating 

inundation over flat terrain like the Pantanal.  

The comparison of multiple wetland mapping products for the West Siberian Lowland (Fig. 5b) shows that WAD2M 

permanent wetlands capture the general spatial distribution represented by most other products. WAD2M shows a good 350 

agreement with the independent dataset from Terentieva et al., 2016 that combine field survey and satellite images, in 

particular for inundation peatlands (e.g. fens and bogs) from 55N-65N in the Taiga forests. The Kappa coefficient of the 

WAD2M wetland map with Terentieva et al., 2016 for the West Siberian Lowland is 0.70 (Fig. 6b), higher than the value of 

GIEMS2, GLWD, SWAMPS-GLWD, Tootchi et al., 2019 (Kappa coefficient of 0.18, 0.57, 0.54, and 0.43 respectively). 

Wetlands in high latitudes above 65N are more intermittent, caused by thawing of permafrost and thus related to interannual 355 

climate variations. 

3.3 Temporal patterns 

3.3.1 Seasonal cycle 

Distinctive seasonal cycles in WAD2M can be observed across varying latitudinal bands. (Fig. 7).  The Tropics (30°S-30°N) 

contributes 68% of the global annual variation in wetland area, owing the large wetting and drying cycles of tropical 360 

wetlands. Despite its large area of intermittent wetlands, the mid-latitudes have a less pronounced seasonal cycle with an 

average annual minimum of 0.9 Mkm2 and average annual maximum of 1.1 Mkm2 compared to the tropics and high-

latitudes. High latitude wetlands again have a strong seasonal cycle with an average annual minimum of 0.24 Mkm2 and 

average annual maximum of 1.5 Mkm2. The seasonal cycle of WAD2M in mid-latitude is small compared to GIEMS2 

(Prigent et al., 2020), which is possibly due to different algorithms applied in SWAMPS and GIEMS2, especially in the way 365 

the vegetation contribution is accounted for. The seasonal cycle in the high latitudes is highest among the three regions, 

which is consistent with GIEMS2 and are mainly due to significant annual freeze/thaw cycle.  

Given that there is a surprising scarcity of independent wetland products to evaluate the seasonal patterns in mid- and high-

latitudes, we only focus on the comparison of seasonal cycle for the Amazon Basin, the largest regional contributors to the 

seasonal cycle of wetland extent. For the Amazon Basin Lowlands, the estimates of wetland area exhibit a significant 370 

seasonal pattern in both the WAD2M and SAR-based high-resolution estimates from Hess et al. (2015). As illustrated in Fig. 

8, the flooded/inundated wetlands in WAD2M vary considerably from 0.285 Mkm2 in the low-water season (Oct.-Nov.) to 

0.747 Mkm2 in the high-water season (May-June). The average amplitude between the dry/wet seasons mapped by WAD2M 

is 0.461 Mkm2, which is comparable to the estimated range 0.349 Mkm2 from Hess et al., 2015 for the year 1995-1996. The 

satellite products based on passive microwave bands such as SWAMPS, underestimate the seasonality and total wetland 375 

areas due to their limited ability to detect inundation outside of large wetlands and river floodplains. This indicates the needs 

to improve the retrieval approach to account for the vegetation contribution in the processing of active and passive 

microwave signal. 
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3.3.2 Interannual variation 

The interannual variations in WAD2M suggests the effect of climate variations on global wetland extent across varying 380 

latitudinal bands (Fig. 7). Monthly anomalies, calculated by subtracting the 19-year mean monthly value from the monthly 

time series, reveal the changes in global wetlands in response to global climate variability such as the El Niño-Southern 

Oscillation (ENSO) (Fig 7b). For instance, a strong positive response in wetland areal anomalies was captured by WAD2M 

during the strong 2010-2011 La Niña event that temporarily increase the terrestrial water storage via affecting precipitation 

patterns globally (Boening et al., 2012). The signal for the recovery captured by WAD2M, i.e., the decline during the late 385 

stage of La Niña, is consistent with the estimated terrestrial water storage from GRACE and the ESA CCI soil moisture 

product (Fig. 9). The linear fit of the pan-tropical wetland anomalies for WAD2M over 2000-2018 shows no significant 

change (p > 0.1) in the wetland extent for the entire period, consistent with (Parker et al., 2018) that showed no trend in 

tropical wetland emissions using satellite based inversion of CH4 concentrations. Although the tropical regions have a net 

reduction of 1.3 103 km/yr (p < 0.05) over the 2000-2018 period. There are no trends of wetland extent for mid-latitudes and 390 

high latitudes (p> 0.1) as was also found with Landsat imagery (Wulder et al., 2018). 

In general, variation in surface water in the tropics is primarily driven by precipitation and the agreement in the patterns of 

the surface water extent and precipitation gives confidence in the inter-annual variability of wetland area estimation. At high 

latitude, surface-water runoff from snowmelt, not from direct precipitation, contributes towards the lower correlation 

between inundation extent and precipitation. A strong decline in wetland area during the early stage of El Nino in 2015-2016 395 

was captured by all of the products. The GIEMS2 dataset shows a similar patterns as WAD2M in two aspects: 1) Tropical 

wetlands contribute to over 50% of the global total wetland areas and the decadal change in wetland extent are mostly 

confined to the Tropics; 2) The temporal variations in WAD2M is consistent with GIEMS2, where a sharp decrease in the 

Tropics was found for 2010-2012, followed by a upward trend from 2013-2014. Note that despite the decline in 2000-2006, 

the WAD2M estimate is followed by a slight recovery during the 2007-2014. 400 

For the interannual variations at river basin scale, there is a generally good agreement in the interannual variation of wetland 

extent between WAD2M and four surface water products that are based on different methodologies (Fig. 9). All the products, 

including WAD2M, suggest a declining trend in wetland extent in Amazon Basin since 2012, with strong negative anomalies 

during 2015-2016 when the strong El Nino event occurred. The temporary increase in wetland extent in WAD2M 

responding to the strong La Nina event of 2010-2011 is supported by the satellite-based observation of water storage and 405 

surface soil moisture, where good agreements of strong positive phase in terrestrial water were found for Orinoco River 

Basin and Paraná Basin in South America. The temporal variations of wetland extent for the Ganges River Nile, Yangtze, 

and Mekong River also suggest a good agreement between WAD2M and other products, except for the period since 2015 

where GRACE observations suggest a strong decline in Ganges River Basin and Yangtze River Basin while WAD2M 

remain constant or slightly declined. This discrepancy could be due to changes in irrigated rice extent, suggesting that the 410 

wetland extent in these regions so far is less influenced by groundwater depletion caused by human activity (Rodell et al., 

https://doi.org/10.5194/essd-2020-262

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 22 December 2020
c© Author(s) 2020. CC BY 4.0 License.



14 

 

2018). This can be supported by the wetland extent estimate from the TOPMODEL based prognostic hydrological approach 

(Zhang et al., 2018), which explicitly exclude influence of human activity and attributes the change to the enhanced tropical 

precipitation since 2014. 

3.4 Uncertainties in wetland areal estimation and future direction 415 

Fig. 10 shows the uncertainty range (1) of mean annual maximum wetland area across the 6 global and regional data 

sources applied in this study. Amazon Lowland Basin and Siberian Lowland are two relatively more informed regions 

compared to the rest of the world (Fig. 10b). There is considerable uncertainty in wetland hotspots such as Hudson Bay 

Lowlands, West Siberian Lowlands, and major tropical floodplain regions. The causes of the high uncertainty for the boreal 

and tropical wetlands differ. Mapping boreal wetlands requires discriminating between wetlands and small ponds, which are 420 

both considered as wetlands in some inventories (e.g., GLWD) but as inland waters in others (e.g., GSW). Thus, the removal 

of freshwater area is one reason that the boreal wetlands in WAD2M are lower. The uncertainty over tropical floodplain 

systems is due to the temporal mismatches of the different data sources, and the large seasonal and interannual variability in 

inundated area. Further, densely vegetated forest canopies in tropical floodplains can lead to systematic under-estimation of 

inundation from satellite-based products. Also, uncertainty in DEMs (from spatial resolution, or whether the measurements 425 

are ‘surface’ or ‘soil’), which serves as the basis of topographic index that is applied in the hybrid wetland mapping products 

(e.g. CIFOR, Tootchi et al., 2019), can lead to considerable uncertainty in estimation of wetland extent (Zhang et al., 2016), 

especially for the vegetated wetlands in complex terrain surface (Su et al., 2015).  

4 Discussion 

Due to the scarcity of ground-truth maps for representative regions, further work is needed to confirm the distribution of 430 

inundation captured by WAD2M representing an improvement over existing maps. In particular, the sensitivity to subcanopy 

inundation, the priori knowledge of land cover applied in the retrieval algorithm, and the length of observations can affect 

the overall accuracy of SWAMPS and thus contribute to the uncertainty of WAD2M. For instance, WAD2M reports a vast 

inundated area in the Sahel region where validation of the SWAMPS retrieval algorithm is lacking due to sparsity of 

dynamic ground observations (Jensen and McDonald, 2019). Moreover, the decadal trends of WAD2M are influenced by the 435 

inter-calibration of brightness temperature across different microwave sensors, which could potentially introduce 

inconsistency between different time period covered by the measurements. Thus, it is important to be cautious with the 

interpretation of the long-term trends based on WAD2M. Lastly, because the GSW and MIRCA2000 data sources are 

aggregated to  0.25 spatial resolution in the processing of WAD2M, it ignores the potential overlapping between these two 

mergers at fine spatial resolution, leading to unintentional double-accounting when deducting open water and rice paddies 440 

from WAD2M.  
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Future refinements to WAD2M could come from 1) improvements to revisit, spatial resolution, spectral range and signal-to-

noise of remotely sensed data input and 2) refinements to our fusion methodology to use uncertainties to generate ensemble 

maps. Several new or upcoming satellite missions may provide improved global wetland dynamics in the future version of 

WAD2M. The Cyclone Global Navigation Satellite System reflectometry (CYGNSS/GNSS-R) (Nghiem et al., 2017) 445 

demonstrate its capabilities to detect the inundation under different vegetation condition, which is complementary to 

inventories for evaluation. The NASA Surface Water and Ocean Topography (SWOT), the Copernicus L-band SAR mission 

Radar Observing System for Europe  (ROSE-L) (Pierdicca et al., 2019), and NASA-ISRO SAR (NISAR) mission, will 

greatly increase our capacity to monitor the spatiotemporal dynamics of wetlands and floodplains at high spatial resolution 

(<50m), make it an immensely valuable resource in the future work of wetland dynamic mapping such as WAD2M. 450 

Commercial satellites are providing even higher-spatial resolution at daily revisit, i.e., PLANET Dove constellation, which is 

intercalibrated could go beyond providing static maps and provide time series of wetland data (Cooley et al., 2017). 

For the methodology, combining products from different satellite sensors (e.g. optical and microwave) and inventories has 

been proved to be a feasible way to reduce the bias in the spatial distribution of wetlands and provide reliable estimates for 

the use of global wetland CH4 studies. However, the spatial resolution of WAD2M is dictated by the resolution of its input 455 

data on wetland dynamic dataset unless a downscaling methodology is applied. Downscaling can also be used to improve 

spatial resolution using artificial neural networks (see https://hess.copernicus.org/articles/22/5341/2018/hess-22-5341-2018-

discussion.html) Machine learning approaches (Alemohammad et al., 2018; Kratzert et al., 2018; Wu et al., 2017) or 

physically-based hydrological models (Gumbricht, 2018), together with higher resolution images (e.g. Landsat, ALOS 1&2) 

are better suited to capture inundation features at fine scales. On the other hand, inventories at the regional and national 460 

scales are needed for some less-informed wetlands (e.g. Africa, and Southeast Asia), which will help reliable validation and 

evaluation for these regions in the future quantitative studies of wetland. Moreover, even with better sensors in the future, 

improvements on wetland maps from past & future satellite will be necessary for backward extension of time series. 

5 Data availability 

The global wetland dynamic datasets in netcdf format is publicly available at https://doi.org/10.5281/zenodo.3998454 465 

(Zhang et al., 2020). 

6 Conclusion 

The development of a global wetland product WAD2M has demonstrated the capability to produce maps of wetlands and 

inundation that are consistent with independent datasets. Combining temporal dynamics from coarse resolution product 

SWAMPS with complementary products and inventories was shown to be a practical means of tracking variations of global 470 

wetland extent over time. WAD2M represents the most reliable representation of global vegetated wetland distribution to 
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date and will be useful to estimate wetland CH4 flux. WAD2M provides valuable information for a range of applications, 

ranging from understanding the role of floodplains to carbon modelling and general assessment of global response to climate 

change.  
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Tables 795 

Table 1: Three states of inundation (Unit: 103 km2) at different steps of the processing of WAD2M.  

State of 

inundation Continent 
Original 

SWAMPS 

After wetland 

upward merger 

After removal of rice & 

open water (WAD2M) 

MAmin Africa 499.4 641.6 456.7 

Asia 1,387.8 1,685.8 1043.9 

Europe 366.0 391.3 202.7 

Central & South 

America 
610.2 943.2 721.8 

North America 1,421.5 1,724.1 892.2 

Oceania 206.7 212.0 189.0 

Global 4,491.7 5,598.0 3,506.4 

MAmax Africa 1,021.7 1,252.5 1,057.8 

Asia 3,018.5 3,692.0 2618.3 

Europe 851.5 907.5 605.8 

Central & South 

America 
803.3 1,323.2 1097.7 

North America 2,229.4 2,820.8 1,799.5 

Oceania 336.1 348.6 331.3 

Global 8,260.5 10,344.6 7,510.4 

MALt Africa 1,726.3 2,151.8 1729.4 

Asia 4,832.1 5,947.5 4523.0 

Europe 1,534.7 1,624.1 1,234.1 

Central & South 1,237.7 2,238.1 1818.2 
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America 

North America 3,274.5 4,222.2 2993.9 

Oceania 787.2 821.0 721.2 

Global 13,392.7 17,004.7 1,3020.0 
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Table 2: Summary of wetland areas (Mkm2) in WAD2M by latitudinal bands in comparison with the 

long-term maximum wetlands from merger datasets applied in the WAD2M processing and independent 

evaluation datasets.  

Wetland Datasets Latitudinal Bands 

 Metric 60°N-90°N 30°N-60°N 90°S-30°N Global 

SWAMPS*  MAmin 0.7 1.4 2.1 4.2 

  MAmax 1.6 3.3 3.6 8.5 

  MALt 2.5 5.1 5.6 13.4 

Static merger datasets GSW† MALt 1.1 2 1.4 4.5 

 CIFOR* MALt NA 0.5 4.1 4.6 

 

NCSCD& 

CAWASAR‡ MALt 2.3 0.9 NA 3.2 

 GLWD*§ MALt 1.5 3.1 4.2 8.8 

 MIRCA2000¶ MALt 0 0.1 0.3 0.4 

WAD2M#  MAmin 0.5 1.1 1.7. 3.5 

  MAmax 1.2 3.1 3.2 7.5 

  MALt 2.1 5.4 5.5 13.0 

Comparison datasets GIEMS2* MALt 1.9 3.9 5.9 11.7 

 Tootchi2019** MALt 3.6 8.4 16.8 28.8 
*represents inundated area. 800 
†represents open water. 

‡represents peatlands and mineral wetlands. 

§GLWD excludes rivers, lakes, and reservoirs; wetland classes interpreted to be at middle range.  

¶ represents irrigated rice paddies. 

#includes both inundated and non-inundated wetlands but excludes artificial inundation and lakes, ponds, and reservoirs. 805 
** For Tootchi et al., 2019, we use the CW-TCI version and exclude lake areas. 
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Figures 

 
Figure 1: Flow chart of the method describing the wetland extent estimate from SWAMPS and other 

water body datasets to consolidate our WAD2M product. The chart describes the step calculating fw in 810 
each 0.25 grid-cell i at time (monthly) t. 
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Figure 2: Global maps of wetland fraction before and after processing for (a) global distribution of 

MAmax of SWAMPS; (b) global distribution of MAmax superimposed by NCSCD, GLWD, and CIFOR, (c) 815 
difference of MAmax between inventories and original SWAMPS (inventories minus SWAMPS); Here the 

only the positive difference is shown as only the regions with positive values apply the upward correcting 

factors. 
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Figure 3: Maps of wetland extent in WAD2M for (a) long-term maximum (MALt); (b) mean annual 

minimum (MAmin); (c) mean annual magnitude (MAmax minus MAmin); and (d) intermittent inundated 

(MALt minus MAmax). 
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Figure 4: Latitudinal gradient of WAD2M in comparison to existing wetland/inundation products. (a). 

Comparison with the dynamic inundation products GIEMS2 and SWAMPS-GLWD (previous version of 830 
WAD2M). The solid lines represent long-term mean annual maximum (MAmax) with upper (MALt) and 

lower (MAmin) range of inundated area marked as shaded area. (b), Comparison with static inventory 

datasets. To make it a fair comparison, lakes, rivers, and reservoirs (i.e. class 1-3 in GLWD) were 

excluded from GLWD. Lakes (code 4) were excluded from topographic index (TCI) version of the global 

wetland composite map from Tootchi et al., 2019 (denoted as Tootchi2019). The wetland area is 835 
calculated by 2-degree latitudinal band. 
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Figure 5: Maps of fractional wetland area from WAD2M in comparison with benchmark datasets for (a) 840 
Amazon Basin Lowland; (b) West Siberian Lowland. The wetland maps from WAD2M, GIEMS2, GSW, 

and CIFOR represent long-term maximum while the fractional inundation for Amazon Lowland from 

Hess et al.,2015 represents wetland during the period 1995-1996 for the high-water season. GLWD 

represents GLWD level 3 that excludes lakes and reservoirs. 

845 
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Figure 6: Matrix of Kappa coefficient for each pairwise comparison for (a) Amazon Lowland Basin and 

(b) West Siberian Lowland. The Hess et al., 2015 and Terentieva et al., 2016 represent two independent 

regional datasets. All of the datasets in (b) were masked by the map of Terentieva et al., 2016, which is 850 
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available for the taiga forest zone, hence the calculation of the Kappa coefficient excludes the arctic 

tundra zone (latitude > 65N). 
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Figure 7: The WAD2M wetland extent and their anomalies from 2000-2018. Monthly-mean wetland 855 
extent (left column; a,c,e,g) for 2000-2018 in black, for the globe, Tropics (30S-30N), and mid-latitudes 

(30N-55N) and northern high latitudes (latitudes > 55N). Horizontal dashed lines in the left column 

panels represent the mean annual maximum and the mean annual minimum. In the right column (b.d,f,h), 

the deseasonalized anomalies (black) with the 6-month running mean (red) and linearly fitted trends 

(blue) using least-squares regression were listed. Shaded areas represent the La Niña phase from NOAA 860 
multivariate ENSO index. 
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Figure 8: Spatial distribution of wetland areal fraction during the low- (Oct-Nov) and high-water (May-July) seasons 865 
for Amazon Basin lowland at 0.25 degree cells. 
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Figure 9: Temporal variations of wetland anomalies in WAD2M in comparison with terrestrial water 

products from multiple sources. The anomaly values were standardized using the Z-score. The shaded 870 
lines and the solid lines represent standardized value and the 12-month running mean of the anomalies. 
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Figure 10: Uncertainty (1-) of annual maximum wetland area (MAmax) across data sources. The data 

sources used in the calculation are WAD2M, GIEMS2, GLWD, CIFOR&CAWASAR, NCSCD, 875 
Toochi2019, Terentieva et al., (2016), and Hess et al., 2015. (a) spatial distribution of uncertainty in 

wetland fraction.  (b) Number of products used in the calculation. 
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Appendix A 880 

 
Table A1. Overview of existing global and regional datasets of open water, wetland, and related proxy 

datasets. 

Name and reference Resolution Type Source Spatial coverage Temporal coverage 

Global      

Matthews and Fung, (1987) 1° Wetlands Digital maps for 

vegetation, soil, and 

inundation 

Global Static 

GLWD-3 (Lehner and Döll, 

2004) 

30 arcsec, ~ 

1km 

Inland water 

bodies (lakes, 

reservoirs and 

wetlands) 

Digital database based on 

inventories 

Global Static 

GIEMS (Prigent et al., 2007) 0.25° Inundation Multiple satellite fusion Global 1993-2007 

GIEMS2 (Prigent et al., 

2020) 

0.25° Inundation Multiple satellite fusion Global 1992-2015 

GIEMS-D15 (Fluet-

Chouinard et al., 2015) 

15 arcsec, 

~500 m 

Inundation Multiple microwave 

sensors 

Global 1993-2007 

GIEMS-D3 (Aires et al., 

2017) 

90 m Inundation Multiple satellite fusion Global 1993-2007 
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Feng et al., (2016) 30 m Surface water Landsat images Global Static 

G2WBM (Yamazaki et al., 

2015) 

3 arcsec, ~ 90 

m 

Surface water Landsat images Global Static 

GLOWABO (Verpoorter et 

al., 2014) 

14.25 m Lakes Inventories Global static 

HydroLakes (Messager et al., 

2016) 

15 arcsec, ~ 

500 m 

Lakes Geo-statistical approach 

based on topographic data 

and inventories 

Global static 

Tootchi et al., (2019) 15 arcsec, ~ 

500 m 

Wetland 

composites  

Hybrid of satellite imagery 

and groundwater modeling 

Global static 

GFPLAIN (Nardi et al., 

2019) 

250 m Floodplain Hydrological Model Global static 

MOD44W (Carroll and 

Loboda, 2017) 

30 m  Surface water Landsat images Global static 

GRWL (Allen and Pavelsky, 

2018) 

30 m Rivers and 

streams 

Hybrid of in situ 

measurements and Landsat 

images 

Global static 

GSW (Pekel et al., 2016) 30 m Surface water Landsat images Global 1980-2016 

(Wu et al., 2017) 0.5° Peatlands Machine learning based on 

climate, soil and 

topographic datasets 

Global static 

SWAMPS (Jensen and 

McDonald, 2019) 

0.25° Inundation Multiple microwave 

images 

Global 1992-2018 
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SWAMPS-GLWD (Poulter et 

al., 2017) 

0.5° Wetlands Hybrid of satellite products Global 2000-2012 

PEATMAP (Xu et al., 2018) Polygon Peatlands Meta-analysis based on 

various sources 

Global static 

MIRCA200 (Portmann et al., 

2010) 

5 arcmin Irrigated Rice 

paddies 

Inventories Global static ca. 2000 

(Du et al., 2016) 5 km Open water AMSR-E and MODIS  Global 2002-2011 

GRACE (Landerer and 

Swenson, 2012) 

1° Land water 

mass 

equivalent  

GRACE gravity satellite Global 2003-2012 

Yan et al., (2017) Polygons Wetland 

complex 

Inventories China static 

Zhang et al., (2016) 0.5° Wetlands Hydrological model  Global 1980-2017 

ESA SMOS (Kerr et al., 

2012) 

0.25° Soil moisture Microwave images Global 2011-2017 

SMAP (Reichle, 2018) 9 km Soil moisture Microwave images  Global 2015-2018 

Regional 

Hess et al., (2015) 100 m Floodplain SAR JRES-1 Amazonia Static 

NCSCD (Hugelius et al., 

2013) 

1 km Permafrost 

peatlands 

Polygon-based digital 

invetories  

Pan-Arctic 

(> 45°N) 

Static 

Wulder et al., (2018) 30 m Wetlands (non-

treed and treed 

Landsat land cover maps Canada 1984-2016 
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combined) 

Amani et al., (2019) 30 m Wetlands (bog, 

fen, marsh, 

swamp, and 

shallow water) 

Landsat images Canada Static 

Li et al., (2019) 500 m Surface water MODIS images Mediterranean 

region 

2000-2017 

Jin et al., (2017) 90 m Wetland 

composites 

Landsat and LiDAR Delmarva Peninsula 1985-2011 

DeVries et al., (2017) 30 m Wetland 

composites 

Landsat images North America static 

CIFOR (Gumbricht et al., 

2017) 

232 m Wetlands Expert system approach 

based on topography, soil, 

and climate datasets 

Pan-Tropical static 

PeRL (Muster et al., 2017) Polygons Ponds and 

lakes 

Optical aerial and satellite 

imagery 

Circum-Arctic static 

Terentieva et al., (2016) 30 m West Siberian 

Lowland 

Landsat validated by field 

data 

West Siberian 

Lowland 

static 

CAWASAR (Widhalm et al., 

(2015) 

500m Arctic tundra 

wetlands 

ENVISAT ASAR Images Circum-Arctic 2005-2011 
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